1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
#include "threadpool.h"
#include "shared.h"
#include "ll.h"
#include <threads.h>
#include <stdlib.h>
#include <errno.h>
// Pair some data with a mutex. Specifically a way to deal with mutices easier, not for data storage (mtxpair_free does not free the `(void*)data` member)
typedef struct mtxp {
void *data;
mtx_t mtx;
} mtxpair;
mtxpair * mtxpair_init(void * const data, int type) {
mtxpair *mtxp = VALLOC(1, sizeof(*mtxp));
if(!mtxp)
return NULL;
// Init the mutex
if(mtx_init(&mtxp->mtx, type) == thrd_error) {
free(mtxp);
RETURNWERR(errno, NULL);
}
mtxp->data = data;
return mtxp;
}
void mtxpair_free(mtxpair *mp) {
if(!mp)
return;
mtx_destroy(&mp->mtx);
free(mp);
return;
}
int mtxpair_setdata(mtxpair * const mp, void * const data) {
if(!mp)
RETURNWERR(EINVAL, -1);
mp->data = data;
return 0;
}
// thrd_create which calls mtx_lock/unlock on `arg` automatically
int thrd_createwmx(thrd_t * const thr, thrd_start_t func, mtxpair * const mtxd) {
if(!thr)
RETURNWERR(EINVAL, thrd_error);
if(!func)
RETURNWERR(EINVAL, thrd_error);
if(!mtxd)
RETURNWERR(EINVAL, thrd_error);
if(mtx_lock(&mtxd->mtx) == thrd_error) {RETURNWERR(errno, thrd_error);}
int retval = thrd_create(thr, func, mtxd->data);
if(mtx_unlock(&mtxd->mtx) == thrd_error) {RETURNWERR(errno, thrd_error);}
return retval;
}
/* Ok, after doing a little more research, the best way to do this is probaby via a producer/consumer architecture. Spawn a bunch of
// threads waiting on a queue (via semaphore) and when one is notified pop a task of the queue and execute it. In this case, the
// producer would be the filesystem scanner funciton providing new files to encrypt, and the consumers would be threads waiting
// to encrypt them */
// Threadpool:
// Array of threads
// Task Queue
// Readiness semaphore / conditional
// Mutex
// Linked List of Tasks
// Task:
// int (*callback)(void*)
// void *arg
// Consumer:
// Wait for cqueue to pop
// Fire task
// Repeat
// Here's a good reference of this implemented in C++ using Boost: https://gist.github.com/mikeando/482342
typedef struct task {
task_callback cb;
void *arg;
} task;
task * task_init(task_callback cb, void *arg) {
if(cb == NULL)
RETURNWERR(EINVAL, NULL);
task *task = VALLOC(1, sizeof(*task));
if(!task)
return NULL;
task->cb = cb;
task->arg = arg;
return task;
}
void task_free(task *ts) {
if(!ts)
return;
free(ts); // Not making any assumptions about the data in the task
return;
}
int task_fire(task *ts) {
if(!ts)
RETURNWERR(EINVAL, -1);
if(ts->cb == NULL)
RETURNWERR(EINVAL, -1);
return ts->cb(ts->arg);
}
typedef struct cq {
dlinkedlist *taskqueue;
dlinkedlist *rthreads;
mtx_t mtx;
cnd_t cnd;
unsigned char canceled;
} cqueue;
static void ___ucleanup_mtxd(void *mtx) {
if(!mtx)
return;
mtx_destroy((mtx_t*)mtx);
return;
}
static void ___ucleanup_cndd(void *cnd) {
if(!cnd)
return;
cnd_destroy((cnd_t *)cnd);
return;
}
cqueue * cqueue_init() {
cleanup_CREATE(10);
// Create base object
cqueue *cq = VALLOC(1, sizeof(*cq));
if(!cq)
RETURNWERR(errno, NULL);
cleanup_REGISTER(free, cq);
cq->canceled = 0;
// Initialize the mutex
if(mtx_init(&cq->mtx, mtx_plain) != thrd_success)
cleanup_MARK();
cleanup_CNDREGISTER(___ucleanup_mtxd, &cq->mtx);
// Initialize the conditional
if(!cleanup_ERRORFLAGGED)
if(cnd_init(&cq->cnd) != thrd_success)
cleanup_MARK();
cleanup_CNDREGISTER(___ucleanup_cndd, &cq->cnd);
// Create the taskqueue
if(!cleanup_ERRORFLAGGED)
if(!(cq->taskqueue = dlinkedlist_init()))
cleanup_MARK();
cleanup_CNDREGISTER(dlinkedlist_free, cq->taskqueue);
// Create the thread list
if(!cleanup_ERRORFLAGGED)
if(!(cq->rthreads = dlinkedlist_init()))
cleanup_MARK();
cleanup_CNDREGISTER(dlinkedlist_free, cq->rthreads);
if(cleanup_ERRORFLAGGED)
cleanup_FIRE();
return cq;
// Lambdas would make this a million times easier, as I could wrap this whole thing in a while loop then run a bunch of in-line
// callbacks that do these operations and I wouldn't need this badness. That or I could use a goto, but I also hate that idea
}
void cqueue_cancel(cqueue * const cq) {
if(!cq)
return;
mtx_lock(&cq->mtx);
if(cq->canceled) {
mtx_unlock(&cq->mtx);
return;
}
cq->canceled = 1;
mtx_unlock(&cq->mtx);
cnd_broadcast(&cq->cnd);
return;
}
static int ___cqueue_join(void *t) {
if(!t)
return -1;
int retval = 0;
thrd_t thread = *((thrd_t*)t);
thrd_join(thread, &retval);
return retval;
}
void cqueue_free(void *cq) {
if(!cq)
return;
cqueue *real = (cqueue *)cq;
// Cancel threads and wait for them to exit
cqueue_cancel(real);
dlinkedlist_foreach(real->rthreads, ___cqueue_join);
// Threads are dead, no need to worry about concurrency anymore
mtx_destroy(&real->mtx);
cnd_destroy(&real->cnd);
dlinkedlist_free(real->rthreads);
dlinkedlist_free(real->taskqueue);
return;
}
// int cqueue_addtask(cqueue * const cq, task * const tsk) {
// if(!cq || !tsk)
// RETURNWERR(EINVAL, -1);
// mtx_lock(cq->mtx);
// // TODO: Think about creating an "exception" via signal handling
// if(cq->canceled) {
// mtx_unlock(cq->mtx);
// thrd_exit(-1);
// }
// dlinkedlist_prepend(cq->list, tsk, free);
// mtx_unlock(cq->mtx);
// cnd_signal(cq->cnd);
// return 0;
// }
// task * cqueue_waitpop(cqueue * const cq) {
// if(!cq)
// RETURNWERR(EINVAL, NULL);
// task *retval = NULL;
// mtx_lock(cq->mtx);
// while(dlinkedlist_isempty(cq->list) && !cq->canceled)
// cnd_wait(cq->cnd, cq->mtx);
// if(cq->canceled) {
// mtx_unlock(cq->mtx);
// thrd_exit(-1);
// }
// retval = dlinkedlist_get(cq->list, dlinkedlist_size(cq->list) - 1);
// dlinkedlist_remove(cq->list, dlinkedlist_size(cq->list) - 1);
// mtx_unlock(cq->mtx);
// return retval;
// }
typedef struct tp {
thrd_t **threads; // thrd_t *threads[]
int nthreads;
cqueue *taskqueue;
} threadpool;
|